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Abstract--A new method for the estimation of finite strain using spatially 'anti-clustered' distributions of points 
is described. Besides having been empirically validated via simulation, it is also evaluated by means of analysing 
a deformed spilite containing calcitic amygdules, which have retained their originally spheroidal shape, as well as 
elliptical chloritic amygdales with the same ductility as the matrix in which they are embedded. There is complete 
agreement between the results obtained using the Rf/~b method on the chloritic amygdales, and those provided 
by the method now proposed when applied to the centres of the calcitic amygdules. 

INTRODUCTION 

THE CORPUS of techniques for the determination of 
finite strain in rocks has undergone a sizeable growth 
during the last fifteen years (for a survey see Ramsay 
1976). However, two conditions have been restraining 
the range of application of those methods. Firstly, 
objects of spherical or ellipsoidal shape do not occur as 
often as one might wish throughout deformed regions, 
and secondly, the proposed methods do not take into 
account the ductility contrast between the marker 
objects and the matrix in which they are embedded. 

To overcome these difficulties, the centres of objects 
may be considered, following the centre-to-centre 
method of Ramsay (1967, pp 195-197). Strain is then 
studied by means of configurations of points. A general 
theory is required for the deformation of spatial distribu- 
tions of points in geological materials. This is the object 
of the present paper. 

SOME THEORETICAL CONSIDERATIONS 

We wish to use the concept of a spatial distribution of 
points as a model for the naturally occurring distribu- 
tions of particles or points in space. Accordingly, and 
restricting our attention to the two-dimensional case, let 
us define a spatial distribution of points in the Euclidean 
plane as a set of points such that every circle of finite 
radius contains only a finite number of them. 

We are not particularly interested in regular patterns 
(those that are detcrmined by the position of one particle 
and by some 'law' defining the geometry of the pattern). 
The distributions of points relevant to us are those which 
can be regarded as the outcome or realization of some 
random mechanism (which we may describe as a stochas- 
tic point process). Although we shall have to consider in 
practice a wealth of different models for such random- 

ness, we will be mainly concerned with point processes 
whose statistical properties are shift-invariant 
(homogeneous or stationary) and rotation-invariant 
(isotropic). 

That the natural diversity requires different stochastic 
models for its description becomes apparent from the 
analysis of very simple cases. Consider, for instance, the 
distribution of pyrite crystals scattered in an argillaceous 
matrix, and suppose that at the scale of observation they 
may be regarded as points. It being reasonable to assume 
'complete' independence between the law of nucleation 
of different crystals (in the sense that the numbers of 
crystals in disjoint regions of the rock are independent 
random variables), we are led to regard the Poisson 
process as a likely model for such a situation. However, 
if the distribution of points corresponds, say, to the 
centres of ooliths, then no two centres can lie arbitrarily 
close to each other (the distance between pairs of centres 
must be larger than twice the minimum oolite radius if 
there is no pressure solution). In these circumstances a 
Poisson model is no longer appropriate. Spatial distribu- 
tions of the latter type are referred to by Fry (1979) as 
'anti-clustered'; probabilists usually call them 'processes 
with exclusion' (e.g. Murmann 1978). 

Both Ramsay (1976) and Fry (1979) have shown that 
the state of finite strain cannot be estimated using reali- 
zations of Poisson point processes. Indeed, any method 
of strain estimation from spatial distributions of points 
will have to use as raw material the relative positions of 
the points; since the linear transformation of a Poisson 
process yields a Poisson process (the ratio of the intensity 
measure of the strained process to that of the unstrained 
one being equal to the determinant of the transforma- 
tion), the strained configuration will always still enjoy 
the same 'extreme independence property' which 
characterizes the Poisson process in general (Miles 
1970). 

Fry's (1979) 'all object separations' method seems to 
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(a) 

(b) 

Fig. 1. Level curves of the density of the conditional spatial distribution 
of points around a given point ( 'max '  denotes the highest level). (a) 

Initial configuration; (b) deformed configuration. 

be applicable to the estimation of strain suffered by 
initially homogeneous isotropic point processes such 
that the conditional spatial distribution of points in the 
neighbourhood of a given point has a density of the type 
outlined in Fig. 1. There exist, however, certain special 
models for which other techniques are adequate. One 
such is Thomas's (1949) double Poisson process, whose 
realizations consist of clusters or galaxies of points, so 
that the 'centres' of the clusters are determined by a 
Poisson process (with intensity ),1, say), and the number 
of points for cluster is a Poisson random variable (with 
mean A 2, say). 

If the bivariate probability distribution which deter- 
mines the allocation of points in a cluster around its 
centre has finite and equal variances and null covariance 
(hence, circular dispersion matrix), then we have the 
following simple result: 

Let ,~o be the circular dispersion matrix of  the proba- 
bility distribution determining the spatial allocation of  
points within a cluster. Let T be a linear transformation 
with det T > 0. Then, the ratio of  the eigenvalues of  
-X1 = T,XoT' (which is the dispersion matrix of  the strained 
cluster) is equal to the square of the axial ratio of  the strain 
ellipse, and the eigenvectors of  J~l define the orientation 
of the axes of  the strain ellipse. 

To show that this is true let 

and 

+ b 2 ac + bd] 
~'1 = |[ac + bd c 2 + d2jCr0 .2 

so that 

This has the same eigenvalues as 

c2+d 2 - ( a c + b d ) ]  2 
- ( a c  + b d )  a 2 -I- b E] °'°" 

But 

c a + d 2 - (ac  + bd)] 
- (ac  + bd) a2 + b2 ] (det T) -2 

is Cauchy's strain tensor, whose eigenvalues are 121 and 
111, where A1 and A2 denote the principal quadratic 
elongations. Thus, if tr~ and or 2 denote the eigenvalues of 
-~a, then (Possolo 1977) 

2 2 o-i/or 2 = (a~l(det T)2cr2)/(ayl(det T)2cr 2) 

= AI/A 2. 

Moreover, the orientation of the eigenvectors of I~ 1 is 
given by 

tan 2a = 2(ac + bd)/(a 2 + b 2 - ca - d 2) 

(a being the angle between one of them and the Ox axis), 
which is a well known result from finite strain theory for 
the direction of the axes of the strain ellipse (Jaeger 
1969). 

Although this is directly applicable only when the 
original process consists of galaxies of points and the 
whole of one of them is observable, Kullberg (1980) has 
used it as the starting point for developing a method 
based on variance-covariance calculations which can be 
used to estimate the state of finite strain in more general 
spatial distributions of points. 

INFLATING ELLIPSE METHOD 

It is in the very nature of variances and covariances (of 
the coordinates) of a finite set of points in the plane that 
they be very sensitive to the location of the outermost 
points, hence sensitive to the shape of their convex hull. 

In particular, consider a homogeneous, isotropic, 
'anti-clustered' point process in the plane whose realiza- 
tions are sets of points fairly uniformly scattered, so that 
whenever a bounded region is given, the dispersion 
matrix of the (finite number of) points that lie within it 
will depend essentially on the shape and size of that 
region. Furthermore, consider a circle in the plane, 
which, upon deformation, will become an ellipse (the 
points inside the latter are exactly those which had 
originally lain inside the former). The result presented in 
the previous section now shows that the positive square 
root of the ratio of the eigenvalues of the dispersion 
matrix of these points is an estimator of the axial ratio 
(Rs) of the strain ellipse. 

Any method based on variance-covariance computa- 
tions will have to be able to determine a set of points in 
the deformed configuration whose dispersion matrix is 
'equivalent' to the matrix defining the irrotational com- 
ponent of strain. 

The method we now describe relies on the assumption 
that the direction of maximum elongation is known. 

Inflating ellipse: algorithm 

(1) Determine the centre (C) of the largest rectangle 
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(with one side parallel to the direction of maximum 
elongation) included in the section to be analysed. 

(2) Define a lower bound (Rmin), and an upper 
bound (Rmax) for Rs (clearly, we can always put 
Rmin = 1; the value of Rmax is not critical, and only has 
to be large enough, cf. below). 

(3) Define a positive increment E, less than or equal 
to the precision one wishes to achieve in the determina- 
tion of Rs. 

(4) Initialize R as Rmin. 
Outer loop: Increment R by e, while R ~< Rmax, 

and for each value of R; 
Inner loop: Consider a sequence of inflating ellipti- 

cal domains, all centred at C, with axial ratio R, and with 
the major axis parallel to the direction of maximum 
elongation. The increase in b (minor semi-axis of the 
elliptical domains) proceeds in discrete steps, and termi- 
nates whenever an ellipse is no longer (wholly) contained 
within the rectangle mentioned in (1). For each elliptical 
domain determine its minor semi-axis (b), the variance- 
covariance matrix of the coordinates of the points lying 
inside it, compute the positive square root of its eigen- 
values (Rd), and plot a point with Cartesian coordinates 
(b, Rd). 

(5) The outer loop in (4) yields a set of curves (each 
one corresponding to elliptical domains all with the same 
shape), which typically behave in an oscillatory fashion 
(Fig. 2). 

However, the one corresponding to a value of R 
closest to the value of Rs will tend to become horizontal 
and flat from some value of b onwards, thus losing the 
sinusoidal behaviour. This R will be our estimate of Rs. 

The amplitude of the oscillation may decrease (with 
increasing b) for other values of R, but this will only 
happen for values of b larger than the one corresponding 
to the value of R we have chosen as our estimate of Rs. 

The sinusoidal aspect of each curve is due to the way 
in which the elliptical domain captures new points as it 
grows. The point processes we have been considering 
allow the estimation of strain; hence neighbouring points 
tend to be furthest away in the direction of maximum 
elongation, and closest to each other in an orthogonal 
direction. Under a constant inflation rate, the elliptical 
domain will acquire points more often along the latter 
direction than along the former. This means that while 
points are being acquired in the direction of minimum 
elongation, the ratio of the eigenvalues of the dispersion 
matrix will decrease, and then increase somewhat 
abruptly whenever points in the direction of maximum 
elongation are incorporated. 

This effect can be very clearly appreciated when the 
method is applied to a rectangular lattice of points, 
which also provides additional insight into the rationale 
of the method (Fig. 3). 

The shape of the curves corresponding to real data 
may thus be regarded as having a deterministic compo- 
nent as in the case of a deformed lattice, and a random 
component with stochastic fluctuation around the line 
R = Rs (Fig. 2). 

It should be noticed that other scales of measurement 

might have been adopted for the abcissae; e.g. area of 
the elliptical domain would be a natural choice. We have 
tried various of these. However it turns out that in the 
Rd/b plots the behaviour of the curves in the critical 
region (when one of them becomes flat) is depicted in a 
particularly clear fashion. 

If the deformed, anti-clustered distribution of Fig. 2 is 
progressively 'unstrained', and after each 'unstraining' 
increment the anisotropy of the points lying inside a 
circle is computed, then the minimal value 1.0 (which 
means a 'circular' distribution) shall be attained when 
the applied axial ratio reaches Rs (Fig. 4). 

THE CASI~VEL SPILITE: A CASE STUDY 

In order to evaluate the applicability of the inflating 
ellipse method to analyse the state of strain of a natural 
tectonite, it would be most appropriate to use a rock 
containing objects with some ductility contrast with 
respect to the matrix in which they are immersed; e.g. 
oolites of dolomite and calcite in a calcitic matrix. 

If some technique like Rffih were applied separately 
to each of those classes of objects, different estimates of 
Rs would be obtained for calcitic oolites and dolomitic 
oolites. However, we would expect the inflating ellipse 
method, under the same conditions, to yield identical 
estimates for each of the classes of objects. 

The existence, in the Cas6vel region (135 km SE of 
Lisboa, Portugal), of deformed spilites with calcitic and 
chloritic amygdales in a chloritic matrix, has led us to 
regard them as good raw material on which to test the 
method. 

Microscopic examination shows that the chloritic 
amygdales are clearly ellipsoidal while the calcitic ones 
retain their original spherical shape and, generally, there 
is no interaction between particles. The Rf/4) analysis of 
the chloritic vesicles would thus yield an estimate of Rs, 
against which we should compare the value obtained 
through use of our method on the centres of the calcitic 
amygdales. 

Geology and petrography 

For a general description of the volcanism and its 
facies in the region see Schermerhorn (1970, 1979) and 
Munh~i & Kerrich (1980). Structurally, the southern 
tract of Portugal is an imbricate thrust belt. The main 
structures are arcuate (the general strike is N-S in the 
western portion, and E-W in the eastern part). Vergence 
is towards the SW. 

In the Iberian Pyrite Belt (located in the inner region 
of the arc) the slaty cleavage dips at high angles to the 
NE, is axial planar to the folds but locally transects them. 
Stretching is in a. For further details see Ribeiro et al. 
(1979). 

The spilites near Cas6vel display a fragmental fabric, 
with angular pieces of amygdaloidal spilite together with 
a variety of rock types and sometimes hematite pellets 
set in a tuffaceous spilite matrix. Some slates and jaspers 
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R u n s  

1.06 ' 

1 0 5  . 

1 .04  

1 0 3  

1.02 

1 0 1  

1 0 0  - -  

1 .00 4 . 5 0  5 . 0 0  

i 1 | 

5 . 5 0  

R R e c  

Fig. 4. 'Unstra ining '  method  applied to the deformed distribution of Fig. 2. RRe c is the axial ratio of the reciprocal strain 
ellipse and R.n~ is the axial ratio of the anisotropy ellipse of the distribution of points lying inside a circle of  max imum radius. 

are interbedded with spilites and these are overlain by 
slates and acid tuffites. The bedding is not well defined in 
the massive spilites but is clearly seen in the slates• The 
top of the spilites is marked by an increase in the density 
of calcitic vesicles• 

In the spilites the cleavage is stronger in the matrix, 
moulding itself to the flattened fragments• There is 
cleavage refraction at the contact of slates to spilites, 
showing that the latter are less deformed than the slates• 

Our object of study is an XZ-section of an amygdaloi- 
dal microlitic spilite (Fig. 5) (X>  Y> Z are principal 
axes of the strain ellipsoid). The matrix is micro- 
crystalline, very finely grained, containing chlorite, 
albite, opaque minerals and somewhat rare calcite• 
There are approximately 15 times more calcitic amyg- 
dales than chloritic ones. 

The radii of the calcitic amygdales range between 
200/~m and 2 mm. The results of intracrystalline defor- 
mation are bent cleavage planes and increased twinning• 
The regions around Z are affected by pressure solution, 
and those around X exhibit pressure shadows consisting 
of slightly bent syntaxial calcite fibres• The smallest axis 
of the chloritic vesicles is generally less than 200/xm 
long. The chlorite inside the amygdales has blue polari- 
zation tones, and is generally surrounded by a thin, 
discontinuous envelope, whose nature we have been 
unable to identify under the microscope; it exhibits 
undulatory extinction• When this film is continuous, 
both the internal and external boundaries are elliptical 
with the same axial ratio, which shows that there is no 
significant ductility contrast between the chloritic nuc- 
leus and that envelope• 

Since there is no deflexion of the cleavage trace around 
the chloritic amygdales, we may conclude that no ductil- 
ity contrast between these vesicles and the matrix exists. 

Strain analysis 

The following methods have been applied to the 
Cas6vel spilite (Kullberg 1980)• 

(i) 'All object separations' method (Fry 1979)• Only 
the centres of 566 calcitic amygdales have been used, 
and the corresponding plot is shown in Fig. 6. The 
estimate of Rs is 2.6. However, due to an unclear 
definition of the central ellipse, this cannot be a precise 
estimate• 

(ii) Method RF/cb. It has been applied only to the 
chloritic amygdales, since the others are practically 
spherical• The variant due to Dunnet (1969) and Dunnet 
& Siddans (1971) yields 2.65 as the estimate of Rs 
(Fig. 7). 

The corresponding plot is symmetrical with respect to 
the cleavage trace, which suggests a random initial fab- 
ric. This has been confirmed by means of removing 
estimated strain, and plotting the initial axial ratios (Ri) 
and orientation of the major axis with respect to the 
cleavage trace (0) in polar coordinates (Fig. 8). 

The analysis of this plots shows that the density of 
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Fig. 6. Cas6vel spilite. 'All object  separations '  using the centres of  566 
calcite amygdales.  



Fig. 5. Photomicrograph of the XZ section of CasCvel spilite. Scale bar is 1 mm long. 

239 





Finite strain estimation using anti-clustered distributions 241 

R f -  

6.0 

5.0 

~, 4.0 

* =  \ .  
\ 

% 
3.0 ' 

,%  • 

2.0 .  

CI .  t r a c e  

/ 
r" j 

=-s t 

b e 

/ 
/ 

/ 
I 

' 2'0 ' ' ; 0  ' - 3 0  - -10 10 30 

Fig. 7. CasEvel spilite. Rf,/t~ applied to the chlorite vesicles. 

points decreases rapidly as we move away from the 
region corresponding to values of Ri close to 1~ hence 
suggesting only slight fluctuation around an initially 
circular shape. Also, a chi-square test to the distribution 
of 0 yields a statistic whose value (5.6 in a )(~) by no 
means leads to the rejection of the null hypothesis of 
uniformity in the range [ - 9 0  ° , +90°]. 

The numerical variant of the method, as proposed by 
Shimamoto & Ikeda (1976), yields an estimate of 2.68 
for Rs. 

(iii) 'Inflating ellipse' method. The spatial distribution 
of points used was the same as in (i), and the subjects 
analysed contained between 222 (for the largest domain 
with R = 2.80) and 246 (R = 2.50) points. The corre- 
sponding diagram (Fig. 9) shows that the curve pertain- 
ing to the sequence of elliptical domains with axial ratio 
2.65 is the one which becomes flat and horizontal, and 
assumes such a trend for domains including approxi- 
mately 180 or more points. The perfect agreement with 
the estimate obtained in (ii) is very suggestive. 

(iv) 'Unstraining' method. The 'unstraining' method 
yielded poor estimates for the state of strain of the 
Cas6vel spilite. This is probably due to the small number 
of points lying inside the circular domain used for the 
anisotropy calculations. As a general rule, since defor- 
mation usually reduces the variability of quantities of 
interest (e.g. the orientation of the major axes of peb- 
bles), a method based on a Eulerian description (as 
'inflipse') should be preferred to one following a Lagran- 
gian approach (as 'unstraining'). 

1.50 - 

1.00 

1.50 

e •  I 

(Ri.e) 

e ~  

• , cl,  t r a c e  
i 

1.50 

Fig. 8. Polar diagram (Ri, 0): analysis of the initial fabric of the chlorite vesicles in the Cas6vel spilite (unstrained using 
Rs = 2,65). 
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Fig. 9. Cas6vel spilite. Inflating ellipse using the centres of the calcite amygdales: cf. Fig. 2 for fuller explanation. 

SUGGESTIONS FOR FURTHER STUDY 

Ranking of methods 

The study of the Cas6vel spilite suggests a general 
approach to the estimation of finite strain using spatially 
'anti-clustered' distributions of points. First, Fry's 
method should be applied to the population of points 
available. If this method is unable to produce any esti- 
mate, the material cannot be used for the purpose under 
discussion. Otherwise, it will yield a first approximation 
to the value of Rs, and so the values of Rmin and Rmax 
(cf. inflating ellipse algorithm) can be chosen so that the 
estimate lies between them and their difference is small, 
thus speeding up the process of refining the afore- 
mentioned estimate via the 'inflating ellipse' method. 

Limitations of the method 

Hanna & Fry (1979) discussed various situations in 
which Fry's method could not be used: realizations of 
point processes for which a Poisson process constitutes a 
good approximation, and deformation by sliding at 
object boundaries. The method also fails whenever 
strain leads to the disruption of objects, and so does the 
'inflating ellipse' method; this is so because a one-to-one 
correspondence between points in the unstrained and 
strained configurations is a necessary condition for 
estimability. The domain of cataclastic deformation is 
thus beyond the reach of these methods (Mukhopadhyay 
1980). 

It should be stressed that the assumption of 
homogeneity is indeed crucial, as experience has shown 
in various analyses of natural materials. 

From two to three dimensions 

The transition from two to three dimensions cannot be 
carried out along the lines usually followed in strain 
analysis. 

Indeed, in the plane the problem of the existence of 
some ductility contrast between particles and matrix is 
circumvented since the rigid body rotation induced by 
such contrast is around the centroid of each object. In 
three-dimensional Euclidean space, a section through 
an object does not allow the determination of the point 
invariant for the rotation which the object has undergone 
due to the ductility contrast, and so the problem does not 
seem to be easy to overcome. 

In the case of the Cas6vel spilite, a three-dimensional 
analysis will not change the results obtained via the 
two-dimensional study. Since the calcite vesicles have 
had a theologic behaviour close to rigidity, we may think 
of what happens in a section as if the circle, defined by 
the intersection of a sphere with the plane of the section, 
had undergone a rigid body rotation, which will necess- 
arily have as centre the centroid of such a circular section. 

Future work 

The method here described may be regarded as a 
general tool for the analysis of the fabric of any rock: 
sedimentary, igneous or metamorphic. It allows a quan- 
titative characterization of the anisotropy of any fabric. 
One particle can be replaced by its centroid, which 
depends only on its shape and not on the process which 
has originated it. In particular, some preliminary results 
of an ongoing study of layered fabrics seem promising 
(Kullberg 1980). 
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It is the generality of the method that makes it useful 
in structural analysis, since it sizeably broadens the 
scope of materials in which the state of finite strain can be 
estimated. We no longer require that the objects be 
ellipsoidal, but only that the rigid body rotation due to 
the ductility contrast between them and the matrix, be 
around axes through the objects' centroids. 

Finally, the comparison between the results obtained 
via the Rf/~b method and these obtained using the 
'inflating ellipse' method will allow the computation of 
ductility contrasts between objects and the matrix in 
which they are immersed. This will be an important 
contribution for the palaeo-rheology of deformed rocks. 
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